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Abstract:

This paper analyzes the behavior of daily returns of the iShares 20+ Year Treasury Bond
ETF (TLT), focusing on the impact of macroeconomic and financial market variables, including
market volatility index, S&P500 returns, changes in Fed rates, Treasury bond market yield, and
inflation. Models utilized daily data from January 2004 to July 2024, the analysis incorporates
advanced time-series models to capture the dynamics of returns in TLT. An ARIMAX model
with state-dependent dynamics using a Threshold Autoregressive (TAR) framework reveals the
significant role of Federal Funds Rate changes in regime-dependent effects on returns.
Additionally, a GARCH-ARIMAX model was employed to address volatility clustering and
persistence, highlighting the impact of recent shocks and long-term volatility persistence. Both
models demonstrate the critical influence of market volatility and equity returns on the daily
performance of TLT. The findings provide a comprehensive understanding of the drivers of
long-term Treasury bond returns and underscore the importance of accounting for regime

changes and time-varying volatility in modeling.
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1 Introduction

This paper analyzes and models the behavior of daily returns of the iShares 20+ Year
Treasury Bond ETF (R_TLT), focusing on the role of macroeconomic and financial market
variables in explaining its dynamics. Key factors such as market volatility (VIX), equity returns
(R_GSPC), inflation (INFL), the Federal Funds Rate (FEDRATE), and long-term Treasury yields
(DGS20) are examined to uncover their relationships with R_TLT. Another critical question
addressed is whether changes in the Federal Funds Rate significantly influence the returns of
R_TLT. The analysis employs two main models: an ARIMA and ARIMAX framework with
state-dependent dynamics through a Threshold Autoregressive (TAR) approach, and a GARCH
and ARIMA model with exogenous variables to capture time-varying volatility. Model
performance is evaluated based on the Akaike Information Criterion (AIC) and Root Mean
Square Forecast Error (RMSFE) to compare different specifications. This comprehensive
approach aims to improve understanding of the factors driving long-term Tresurydy bond ETFs’

returns while enhancing forecasting accuracy for this critical financial instrument.

2 Data Description

The dataset includes daily observations for all trading days from January 5, 2004 to July
1, 2024 (5156 observations). All data was sourced from Yahoo Finance and the Federal Reserve
Economic Data (FRED). Monthly and quarterly data were converted to daily frequency by

extending the values across their respective periods to align with the daily trading days.
Core variables are:
e R TLT =iShares 20+ Year Treasury Bond ETF daily returns, (daily percentage)

e R _GSPC = S&P 500 daily returns, percentage (daily percentage)

e VIX = Index measures the market's expectation of 30-day volatility based on S&P 500
option prices (adjusted close daily)

e GDP = GDP growth Percent change from a year ago (quarterly)

e INFL = CPI inflation Percent change from a year ago (monthly)

e FEDRATE = Federal Funds Effective Rate (monthly)

e NFCI = Chicago Fed National Financial Conditions Index (weekly ending Friday)



e DGS20 = Market Yield on U.S. Treasury Securities at 20-Year Constant Maturity,

Quoted on an Investment Basis (daily percentage)

Descriptive Statistics

Variable Obs Mean Std. Dev. Min Max
RTLT 5157 .018 92 -6.668 7.52
R GSPC 5156 .038 1.195 -11.984 11.58
VIX 5157 19.019 8.698 9.14 82.69
GDP 5157 2.173 2.255 -7.502 12.239
INFL 5157 2.588 1.914 -1.959 8.99
FEDRATE 5157 1.589 1.847 .05 5.33
NFCI 5157 -.34 557 -.823 2.881
DGS20 5157 3.436 1.121 .87 5.61

Our dependent variable exhibits a significant range of values, highlighting that TLT
returns can fluctuate considerably within a single day. However, these fluctuations are not as
significant as those for GSPC returns, which range from losses exceeding -11% to gains slightly
above 11% in a day. It is important to note that due to reasons that variables such as GDD, INFL,
and FEDRATE are not reported daily and had to be extended to match daily frequency their
mean, minimum, and maximum values correspond to the periods of three reporting periods

(month or quarter).

Variance inflation factor Since the same market and macroeconomic factors
VIF 1/VIF

VIX 3.072 326 influence many variables, it is reasonable to assume they

NFCI 2.993 334 L )

FEDRATE 1.904 525 may share similar trends and movements which can cause

GDP 1.88 532 N ) . .

DGS20 1.716 583 multicollinearity. However, the Variance Inflation Factor

INFL 1.461 685 . .

R GSPC 1.041 9% (VIF) was found to be less than 5 for all variables in the

Mean VIF 2.01

model, indicating that multicollinearity is not a concern.

From plot (2.1) it can be seen that higher fluctuations in returns of TLT are in periods
when the FED cuts rates and significantly lower returns in periods when rates increase, which is
consistent with bond theory the inverse relationship between rates and bond prices. Additionally,
on the same graph, it visualized that in periods of recessionary investment when GPD growth is
less than 2% TLT sees higher returns which is also consistent with Monterey policy and bond
prices in the market. As shown in the next plot (2.2), higher NFCI values, which indicate tighter
financial conditions, are associated with higher TLT returns. This aligns with the conception that
during periods of financial distress, investors tend to reallocate their assets toward more secure
long-term treasuries. Evidence from the plot (2.3) supports that, as it shows that lower returns of
GSPC are assisted with higher returns of TLT and vice versa, indicating an inverse relationship

between the two returns. Referring back to graph (2.2) and analyzing the movement of DGS20



compared to TLT returns, there is no significant visual evidence or clear pattern to suggest a
direct relationship between the two, while theoretically, it should be inverse. Only on three
occasions (around dates 1200, 2000, and 4000) do we observe drops in market yields
corresponding to higher TLT returns. However, this pattern is not consistent throughout the entire

sample period.
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Scatterplot of R_TLT vs R_GSPC
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Variable Z(t) p-value To check for stationarity in series we conduct

statistic | for Z(t) Augmented Dickey-Fuller Test (ADF). The ADF test
R TLT 88371 | 0.0000 checks for the presence of a unit root, where the null

R GSPC -93.953 | 0.0000

VIX -57.348 | 0.0000
GDP -50.739 | 0.0000
INFL -50.748 | 0.0000

FEDRATE | -50.786 | 0.0000
NFCI -50.750 | 0.0000

DGS20 -53.692 | 0.0000

3 ARMA Model

3.1 Specification and Estimation

hypothesis assumes that the variable is non-stationary. For
all variables in the table, the Z(t) test statistic is highly
negative, and the corresponding p-values are 0.0000,
indicating that the null hypothesis of a unit root is strongly
rejected at all conventional significance levels. Therefore,
it could be concluded that all variables are stationary,
meaning their statistical properties remain constant over
time. This allows time-series analysis for these variables
without further differencing or transformation.

By analyzing autocorrelation (AC) and Partial Autocorrelation (PAC) from (3.1) and (3.2)

we see several lag values outside of 95% confidence bands, with the majority falling within it.



The results do not follow a clear ARIMA process with strong AR or MA components however
spikes at the first 3 lags could assume the presence of limited autoregressive structure in the
R_TLT data. The correlogram table (3.3) below provides the autocorrelation (AC) and partial
autocorrelation (PAC) values for R_TLT, along with Q-statistics and their corresponding
p-values. The autocorrelation and partial autocorrelation values at all lags are relatively small,
indicating weak serial dependence in returns. However, the Q-statistics are significant for most
lags, with low p-values below 0.05. This suggests that while individual lags may not show strong
autocorrelation, there is evidence of weak dependence across multiple lags. We see that after the
3rd lag AC and PAC almost fully convert to zero, thus it is relevant to estimate all models of
ARIMA up to 3rd lag for both MA and AR components.
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Bartlett's formula for MA(q) 95% confidence bands 95% Confidence bands [se = 1/5qrt(n)]
(3.1) (3.2)
-1 0 1 -1 0 1
LAG AC PAC Q Prob>Q [Autocorrelation] [Partial autocor]
1 -0.0311 -0.0311 4.9793 0.0257
2 -0.0507 -0.0518 18.229 0.0001
3 -0.0323 -0.0357 23.6 0.0000
4 0.0089 0.0040 24.013 0.0001
5 -0.0036 -0.0068 24.078 0.0002
6 0.0220 0.0213 26.578 0.0002
7 -0.0244 -0.0232 29.664 0.0001
8 -0.0288 -0.0288 33.938 0.0000
9 0.0332 0.0305 39.634 0.0000
10 0.0344 0.0319 45.739 0.0000
11 0.0070 0.0113 45.994 0.0000
12 -0.0001 0.0060 45.994 0.0000 (3'3)

Table (3.4) shows different AR and MA specifications of the ARIMA model for the
R_TLT variable. While models with up to 3 lags were tested and compared, only those with up to
2 lags are shown in the table. The optimal model was selected by comparing AIC values, with
the lowest AIC corresponding to the ARIMA(2,0,2) model, which has an AIC of 13,765.91.
Furthermore, both the AR and MA coefficients for the second lag were found to be statistically



significant. However, if we look at lag 1, the AR coefficient is 0.6436, and the MA coefficient is
-0.6688. Since these values are close in absolute value but have opposite signs, their effects
largely cancel each other out at the first lag and a similar effect is observed for the coefficients at
the second lag.

Model ARIMA | AR P>zl MA P>zl AIC
(0,0,0) - - - - 13783.32
(1,0,1) .599645 0.000 -.6475988 0.000
13768.88
(1,0,2) .3510859 0.016 L1. -.3859 | LI.0.008 13766
L2.-.0412 L2.0.001
(2,0,2) L1. .6436 L1. 0.000 L1. -.6688 L1. 0.000 13765.91
L2.-.6166 L2.0.000 L2..5814 L2.0.000

(3.4)

Predicted residuals from the ARIMA(2,0,2) model have a mean equaling 3.16e-06 which
is consistent with the white noise behavior assumption. Table (3.5) shows the correlogram output
of residuals AC and PAC from the ARIMA(2,0,2) model. AC and PAC values for most lags are
close to zero, and many are within the 95% confidence bounds, indicating weak serial
dependence. However, a few lags (such as 9,10, 20) have significant p-values suggesting some
evidence of autocorrelation at these specific lags, which is not consistent with white noise
behavior. Additionally, graph (3.6) supports this evidence as residuals mostly behave like white
noise, but there are significant spikes in a few lags hinting at minor autocorrelation that the model
might not have fully captured. This suggests that the model requires more specifications and
extensions to fully meet white noise assumptions for residuals.
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12 0.0048 ©0.0047 20.131 0.0647 -0.04
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15 0.0026 ©.0034 20.455 ©.1552
16 -0.0078 -0.0079 20.769 0.1876 0.06 . r . .
17 0.0147 ©0.0166 21.881 ©0.1893 0 10 20 30 40
18 0.0381 ©0.0386 29.381 0.0439 Lag
19 0.0271 0.0270 33.177 0.0229 Bartlett's formula for MA(q) 95% confidence bands
20 0.0185 ©0.0184 34.943 0.0204




(3.5) (3.6)

3.2 Forecast and Evaluation

The ex-post forecast for the last 15 observations of the ARIMA(2,0,2) model produced a
Root Mean Square Forecast Error (RMSFE) of 1.0598, indicating that, on average, the model's
forecasts deviate by 1.06% from the actual values. Graph (3.7) reveals that the predictions
significantly underestimate the volatility and are primarily concentrated around zero returns for
TLT. This behavior is largely due to model misspecification and the previously mentioned
cancelation effect between the AR and MA component coefficients. The ARIMA(2,0,2) model
performs poorly in forecasting, despite meeting most of the optimal specification criteria.

Out-of-Sample Dynamic Forecast: ARMA(2,0,2)
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4 ARIMAX(2,0,2) with TAR Model

Several evidence have suggested that the ARIMA model needed improvement, due to
omitted variables and the possibility of structural break. Thus we have tested for structural break
in the R_TLT variable by applying the Quandt-Andrews test, calculating the Chow F-stat for
each day, and seeing all potential breakpoints. At each candidate breakpoint, a Wald test was
performed to compare the model's fit with and without the breakpoint. In graph (4.1), both the
Wald test statistics and the FEDRATE are plotted, it is evident from the graph that there are
several significant spikes in the Wald statistics, which supports the hypothesis that the data has



structural breaks multiple times. Since TLT is an ETF based on long-term Treasury bonds, it is
highly influenced by the FED rate, which suggests that the regime for TLT may depend on the
movements of the FED rate. In the same graph (4.1), it is apparent that sharp drops in the
FEDRATE coincide with high Wald statistics, indicating potential structural breaks during these
periods. Therefore, the changes in the FEDRATE will be used as a threshold to build a TAR
switching model. Specifically, in the table (4.2), the newly generated variables are presented. The
variable dFEDRATE represents the change in the FED rate from one period to the next (day to
day). The dummy variable state_neg represents periods of decreasing rates, taking the value 1
starting from observations where dFEDRATE is negative and extending for up to 56 observations
(the typical maximum time between FED meetings). The extension stops early if a non-zero
dFEDRATE (indicating a monetary policy change) is encountered, resetting to O for positive
values (corresponding to the state_pos_same dummy, which equals 1 during such times) or
continuing with 1 for subsequent negative values. Additional variables are created
satate_neg_TLT and state_pos_same_TLT which are interaction terms between states and lagged
value of R_TLT and interaction for second lag are expressed as state_pos_same_TLT2
state_neg_TLT?2.
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—— Wald test statisics = —— FEDRATE ( 4.] )
Descriptive Statistics

Variable Obs Mecan Std. Dev. Min Max
dFEDRATE 5156 .001 .038 -.96 i
state neg 5157 354 478 0 1
state neg TLT 5156 .004 599 -6.668 7.52
state neg TLT2 5155 .003 599 -6.668 7.52 4.2
statc pos same 5157 646 478 0 1 ( . )
state pos same TLT 5156 .015 .699 -5.045 3.966

state pos same TLT2 5155 .016 .698 -5.045 3.966
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After several tests for the ARIMAX model with different independent variables, it was
concluded that relevant and with the lowest AIC for the model were independent variables VIX,
lag of VIX, R_GSPC with its lag, and INFL. The ARIMAX with TAR regression results in
output (4.3) reveal significant insights into the dynamics of R_TLT. Incorporating
regime-dependent variables based on changes in the Federal Funds Effective Rate (IFEDRATE),
the results demonstrate that during periods of negative dFEDRATE (state_neg), the first lag of
R_TLT (state_neg_TLT) positively influences current returns (p < 0.01), while the second lag
(state_neg_TLT) has a significant negative impact (p < 0.01). Conversely, during periods of
stable or increasing dFEDRATE (state_pos_same), the effects are negative on R_TLT, with
state_pos_same_TLT and state_pos_same_TLT2 both being significant (p < 0.01 and p < 0.05).
Market volatility (VIX) has a positive and significant effect on RTLT(p < 0.01), reflecting
increased demand for long-term Treasuries during uncertain periods. In contrast, R_GSPC
negatively influences R_TLT (p < 0.01), consistent with the flight-to-safety effect. The
significant autoregressive (AR) terms confirm strong persistence in R_TLT, with a positive first
lag (AR(L) = 1.933, p < 0.01) and a negative second lag (AR(L2) = —-0.984, p < 0.01). The
moving average (MA) terms exhibit short-term smoothing, with significant contributions from
both the first and second lags (MA(L) = -1.941, p<0.01; MA(L2) = 0.992, p < 0.01). These
findings emphasize the importance of accounting for structural breaks and threshold dynamics
driven by FEDRATE changes when modeling R_TLT, highlighting the interaction between
monetary policy regimes and Treasury bond returns. This combined model resulted in an AIC
equaling 13148.81 which is a significant improvement compared to ARIMA(2,0,2) with an AIC
of 13765.91.

Graph (4.4) illustrates the ex-post forecast for 100 observations which resulted in
RMSFE equaling 0.9097872. Compared to the ARIMA model, the results show a significant
improvement in the magnitude of fluctuations in R_TLT. However, mismatches in direction

remain frequent, indicating persistent challenges in accurately predicting certain variations.



ARIMA regression

R_TLT Cocf. StErr.  twvalue  p-value  [95% Conf Interval] Sig
TAR
state_neg .023 036 0.63 527 -.048 .094
state_neg_TLT 073 012 5.86 0 .048 .097 *k
state_neg_TLT2 -.082 012 -7.01 0 -.105 -.059 Fokok
state_pos_same 037 031 1.21 228 =023 097
state_pos_same_T -.047 014 -3.30 .001 =075 -019 *rk
LT
state_pos_same_T' -03 .015 -2.00 045 -.06 -.001 o
LT2
X-Var ek
VIX 026 .007 3.86 0 013 .039
L -.024 .006 -3.73 0 -.037 -011 *kok
R_GSPC =221 .01 -21.90 0 =241 =201 *k
L 031 .008 4.10 0 .016 .046 *kok
INFL -014 .005 -2.80 .005 -.025 -.004 ok
AR
L 1.933 006 299.61 0 1.92 1.945 ook
12 -.984 007 -151.14 0 -.997 -971 *okok
MA
L -1.941 005 -415.11 0 -1.95 -1.932 Fkok
12 992 005  211.05 0 983 1.002 Hokok
Constant .864 006 144.91 0 .852 .875 Fkok
Mean dependent var 0.018 SD dependent var 0.921
Number of obs 5155 Chi-square 1268245.504
Prob > chi2 0.000  Akaike crit. (AIC) 13148.809

< 01, ¥ p<.05, *p<.1
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5 GARCH(1,2) with ARIMAX(1,0,3) Model

To improve the model, the volatility clustering of R_TLT was investigated and ARCH
and GARCH models were applied. The ARCH LM test results showed a highly significant
chi-squares statistic of 725.141 with a p-value of 0.0000, indicating strong evidence to reject the
null hypothesis of no ARCH effects. This suggests the presence of autoregressive conditional
heteroskedasticity (ARCH) in the residuals, confirming volatility clustering in the data.
Additionally, in graph (5.1), the squared returns of TLT are plotted, revealing spikes and periods
of heightened volatility, this provides evidence of volatility clustering, as periods of high

volatility tend to persist over multiple consecutive periods.
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(5.1)

These findings influenced the decision to apply the ARCH and GARCH model on top of
the previously done but now modified ARIMAX model. After testing all possible combinations
of lags for all components optimal model was determined to be ARIMA(1,0,3) with ARCH(1)
and GARH(2). Additionally, modifications to the intended variables were made, and optimal
were concluded to be VIX and its lag, R_GSPC and its lag, INFL, dFEDRATE, and one lag of
DGS20. This model shown in output (4.2) was able to achieve a new and low AIC of 12191.62.
In the mean equation, VIX exhibits a positive and statistically significant impact on R_TLT (p <
0.01), suggesting again increased demand for long-term Treasuries during periods of heightened
market volatility, while the lag of VIX has a small but significant negative effect (p < 0.01).
R_GSPC has a strong negative influence on R_TLT (p < 0.01), consistent with the
flight-to-safety behavior, while its lag (L.R_GSPC) shows a marginally significant positive effect
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(p < 0.05). Both INFL and dFEDRATE are statistically significant (p < 0.01 and p < 0.05,
respectively), indicating the role of inflation and monetary policy changes in Treasury bond
returns. The first lag of DGS20 is also significant (p < 0.01), reflecting the influence of long-term
Treasury yields on returns. The variance equation confirms the presence of volatility clustering.
The significant ARCH(1) term (p < 0.01) indicates that recent shocks to the returns, represented
by past squared residuals, have an immediate and substantial impact on current volatility. The
GARCH terms (GARCH(L) = 0.389, p < 0.01; GARCH(L2) = 0.521, p < 0.01) suggest strong
long-term persistence of volatility, where past volatility levels continue to influence current
volatility over an extended period. The ARIMA(1,0,3) structure reveals a strong negative
autoregressive (AR) component at lag 1 (AR(L) = -0.904, p < 0.01), while the moving average
(MA) terms provide significant smoothing effects at lags 1, 2, and 3.

Additionally, slight progress in forecasting efforts was achieved, in graph (5.3) illustrates
the ex-post forecast for 100 observations which resulted in RMSFE equaling .90935889.
Compared to previous models the biggest progress is seen in more successful prediction of the

direction of movement in daily return of TLT.

ARCH family regression -- ARMA disturbances

R_TLT Cocf. St.Err. t-value p-value [95% Conf Interval] Sig
X-Var
VIX .03 .009 3.24 .001 012 047 *kek
L -.029 .009 -3.15 .002 -.046 -011 ek
R_GSPC -223 .015 -14.92 0 -252 -.193 *kek
L 011 .009 1.29 .198 -.006 .029
INFL -017 .006 -2.68 007 -.029 -.005 Fdek
DGS20
L 017 .006 2.76 .006 .005 .029 *kek
dFEDRATE -.69 327 211 035 -1.331 -.05 *k
AR
L -.904 077 -11.69 0 -1.056 -753 *kek
MA
L .886 .078 11.36 0 733 1.039 *kek
12 -.048 .019 -2.49 013 -.086 -.01 *x
L3 -.044 014 -3.04 .002 -072 -016 *kek
ARCH
L .079 .007 10.93 0 065 .093 *kek
GARCH
L 389 102 3.80 0 189 .59 Fdek
12 521 .098 5.29 0 328 713 *kek
Constant .009 .002 5.10 0 .005 012 Fdek
Mcan dependent var 0.018  SD dependent var 0.921
Number of obs 5155 Chi-square 1220.283
Prob > chi2 0.000  Akaike crit. (AIC) 12191.621

B H<, 01, ¥* p<.05, * p<.1
(4.2)
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Out-of-Sample Dynamic Forecast
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6 Conclusion

The findings from the two advanced models, ARIMAX with TAR and
GARCH(1,2)-ARIMA(1,0,3) with exogenous variables, provide significant insights into the
dynamics of R_TLT. The ARIMAX with TAR model revealed the importance of
regime-dependent effects, where changes in the Federal Funds Rate (IFEDRATE) significantly
impact returns depending on the monetary policy state. During periods of rate cuts, positive
influences from lagged returns are offset by subsequent negative effects, while stable or
increasing rates have consistently negative impacts. In contrast, the GARCH(1,2)-ARIMA(1,0,3)
model highlighted the persistence of volatility clustering, with past shocks and volatility strongly
influencing current variance. Both models demonstrated the critical roles of VIX, R_GSPC,
INFL, DGS20, and dFEDRATE as key drivers of Treasury bond returns. The variables supported
the concept of the flight-to-safety effect as in times of distress in financial markets, low and
negative preforms in S&P500 returns (R_GSPC) and high volatility (VIX) return TLT
experiences positive returns. Moving to suggestions for further analysis would include additional
macroeconomic variables for a broader range of economic cycles. The preference for such assets
is heavily influenced by publicly available economic information which is time sensitive, which
shapes market sentiment and drives the allocation of assets into long-term Treasury bonds during
periods of uncertainty. Furthermore, it would interesting to explore more nonlinear models like

regime-switching GARCH or machine learning techniques for improved forecasting accuracy.



