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Abstract

This paper develops a framework for constructing a discrete-time Markov transi-
tion model directly from option-implied risk-neutral densities. Using the Breeden–
Litzenberger result, the risk-neutral probability distribution of the underlying as-
set at each maturity is recovered from the cross-section of European call option
prices. These marginal distributions are then discretized and embedded into a
time-inhomogeneous Markov chain subject to risk-neutral martingale constraints
and local transition structure. The derivation establishes existence and feasibility
conditions for tri-diagonal transition matrices that preserve both marginal consis-
tency and no-arbitrage dynamics. This work is ongoing; numerical implementation,
calibration methodology, and empirical validation using market option data are the
subject of ongoing development.
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Standard Derivation of Breeden–Litzenberger and the Risk-neutral
Density

Consider a stock price St and a European call option with maturity T , strike K, and
time-0 price C(K, T ). Under the risk-neutral measure Q, the call price is the discounted
risk-neutral expectation of its payoff:

C(K, T ) = e−rTEQ
[
(ST − K)+

]
, where (ST − K)+ = max(ST − K, 0).

Let fQ(s) denote the risk-neutral probability density function of ST , then we can write
this expectation as

C(K, T ) = e−rT
∫ ∞

0
(s − K)+fQ(s) ds = e−rT

∫ ∞

K
(s − K) fQ(s) ds.

First derivative with respect to the strike K. Differentiate C(K, T ) with respect
to K. Using Leibniz’s rule for differentiation under the integral sign,

∂

∂K

∫ ∞

K
(s − K) fQ(s) ds = −(K − K)fQ(K) +

∫ ∞

K

∂

∂K

[
(s − K)fQ(s)

]
ds.

Since (K − K)fQ(K) = 0 and ∂

∂K
(s − K) = −1, we obtain

∂

∂K

∫ ∞

K
(s − K) fQ(s) ds =

∫ ∞

K
(−1) fQ(s) ds = −

∫ ∞

K
fQ(s) ds.

Therefore,

∂C(K, T )
∂K

= e−rT ∂

∂K

∫ ∞

K
(s − K) fQ(s) ds = −e−rT

∫ ∞

K
fQ(s) ds = −e−rTQ(ST ≥ K).

Thus the first derivative of the call price with respect to the strike gives the risk-neutral
tail probability.

Second derivative with respect to the strike K. Differentiate once more with
respect to K:

∂2C(K, T )
∂K2 = −e−rT ∂

∂K
Q(ST ≥ K).

The derivative of the tail probability with respect to the threshold K is the negative of
the density evaluated at K:

∂

∂K
Q(ST ≥ K) = −fQ(K).

Substituting back, we obtain: ∂2C(K, T )
∂K2 = −e−rT

(
−fQ(K)

)
= e−rT fQ(K).
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Solving for fQ(K), we have the Breeden–Litzenberger relation:

fQ(K) = erT ∂2C(K, T )
∂K2 .

Breeden–Litzenberger shows that the cross-section of call prices across strikes encodes the
full risk-neutral distribution at maturity: the first derivative with respect to K gives the
risk-neutral tail probability, and the second derivative (after undoing discounting) gives
the risk-neutral density.

Derive Markov Chain from Risk–Neutral Densities

Setup under the Risk–Neutral Measure. Work under the risk–neutral measure Q.

Let 0 = t0 < t1 < · · · < tN

be the time grid (e.g. option maturities), and let St be the underlying asset price process.

Under Q: e−(r−q)tSt is a martingale ⇒ EQ[Sti+1 | Sti
] = Sti

e(r−q)∆ti ,

where r is the risk–free rate, q the dividend yield, and ∆ti = ti+1 − ti.
From option prices (via Breeden–Litzenberger: BL), we have for each ti a risk–neutral
density

fQ(s; ti), s > 0, so that for any Borel set A ⊂ R+, Q(Sti
∈ A) =

∫
A

fQ(s; ti) ds.

Step 1: Discretize the Price Space (States). Since the BL method derives a con-
tinuous PDF, we need to convert it into a discrete one for the Markov application. So
we choose a grid of price levels to be Markov states

s1 < s2 < · · · < sM .

Define bin boundaries for states as a midpoints:

bj− 1
2

= sj−1 + sj

2 , j = 2, . . . , M,

and choose outer cutoffs b1/2 and bM+1/2 so that [b1/2, bM+1/2] ⊃ most of the support of fQ(·; ti).

For each time ti, define the discrete marginal

π
(i)
j := Q

(
Sti

∈ [bj− 1
2
, bj+ 1

2
)
)

≈
∫ b

j+ 1
2

b
j− 1

2

fQ(s; ti) ds, j = 1, . . . , M.
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Collect this into a row–vector

π(i) =
(
π

(i)
1 , . . . , π

(i)
M

)
, π

(i)
j ≥ 0,

M∑
j=1

π
(i)
j ≈ 1.

Step 2: Markov Chain and General Constraints. We construct a time–inhomogeneous
Markov chain

SMC
t0 , SMC

t1 , . . . , SMC
tN

taking values in {s1, . . . , sM} with transition matrices

P (i) =
(
P

(i)
jk

)M

j,k=1
, P

(i)
jk = Q

(
SMC

ti+1
= sk | SMC

ti
= sj

)
.

For all transition matrices P (i) constructed s.t.:
∗ Row stochasticity:

M∑
k=1

P
(i)
jk = 1, P

(i)
jk ≥ 0, ∀j, k.

∗ Marginal propagation (Markov consistency):

π(i+1) = π(i)P (i) ⇐⇒ π
(i+1)
k =

M∑
j=1

π
(i)
j P

(i)
jk , k = 1, . . . , M.

∗ Risk–neutral martingale constraint (row–wise):

EQ

[
SMC

ti+1
| SMC

ti
= sj

]
=

M∑
k=1

P
(i)
jk sk = sje

(r−q)∆ti .

Step 3: Impose Tri–Diagonal (Local) Structure. For simplicity of derivation, allow
transition to the 3 closest states, which imposes a local structure as follows.
From an interior state sj (j = 2, . . . , M − 1) the chain can only move to sj−1, sj, or sj+1

in one step:
P

(i)
jk = 0 if k /∈ {j − 1, j, j + 1}.

Define, for an interior row j: pj,− := P
(i)
j,j−1, pj,0 := P

(i)
j,j , pj,+ := P

(i)
j,j+1.

The key constraints for the process are:

pj,− + pj,0 + pj,+ = 1, (1)
sj−1pj,− + sjpj,0 + sj+1pj,+ = sje

(r−q)∆ti , (2)
pj,−, pj,0, pj,+ ≥ 0. (3)

And let ∆sj,− := sj−1 − sj < 0, ∆sj,+ := sj+1 − sj > 0, mj := sj

(
e(r−q)∆ti − 1

)
.

From the row sum (1) we get pj,0 = 1 − pj,− − pj,+.

4



Substitute pj,0 into the martingale constraint (2):

sj−1pj,− + sj(1 − pj,− − pj,+) + sj+1pj,+ = sje
(r−q)∆ti ,

pj,−(sj−1 − sj) + pj,+(sj+1 − sj) = sj

(
e(r−q)∆ti − 1

)
.

Equivalently, in terms of ∆sj,± and mj, ∆sj,− pj,− + ∆sj,+ pj,+ = mj.

Thus each interior row satisfies:


pj,− + pj,0 + pj,+ = 1,

∆sj,− pj,− + ∆sj,+ pj,+ = mj,

pj,−, pj,0, pj,+ ≥ 0.

This is a system of 2 equations in 3 unknowns, so there we get 1 free variable.

Step 4: Parameterize the Interior Row by pj,+. Let x := pj,+ be the free variable.

∆sj,− pj,− + ∆sj,+ x = mj; [solve for pj,−] pj,−(x) = mj − ∆sj,+x

∆sj,−
.

From the row sum: pj,0(x) = 1 − pj,−(x) − x = 1 − mj−∆sj,+x

∆sj,−
− x.

So for an interior state transition probabilities j,

pj,−(x) = mj − ∆sj,+x

∆sj,−
, pj,0(x) = 1 − mj − ∆sj,+x

∆sj,−
− x, pj,+ = x

Now determine the feasible interval of x from the non–negativity constraints.

Step 5: Lower bounds from pj,− ≥ 0. Require pj,−(x) = mj − ∆sj,+x

∆sj,−
≥ 0.

Since ∆sj,− < 0, multiplying both sides by ∆sj,− flips the inequality:

mj − ∆sj,+x ≤ 0 ⇐⇒ ∆sj,+x ≥ mj.

Because ∆sj,+ > 0, ⇒ x ≥ mj

∆sj,+
. So from pj,− ≥ 0 we get a lower bound

x ≥ Lj := mj

∆sj,+
.

From pj,+ ≥ 0 we also have the trivial bound x ≥ 0. Combining,

x ≥ araw
j := max

(
0,

mj

∆sj,+

)
.

Step 6: Upper Bound from pj,0 ≥ 0. We require: pj,0(x) = 1−mj − ∆sj,+x

∆sj,−
−x ≥ 0.
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Multiply both sides by ∆sj,− < 0, flipping the inequality: ∆sj,−−
(
mj−∆sj,+x

)
−∆sj,−x ≤ 0.

Simplify the left–hand side: ∆sj,−−mj+∆sj,+x−∆sj,−x = (∆sj,+−∆sj,−)x+(∆sj,−−mj).

Let Aj := ∆sj,+ − ∆sj,− = sj+1 − sj−1 > 0.

Then the inequality becomes Ajx + (∆sj,− − mj) ≤ 0 ⇐⇒ Ajx ≤ mj − ∆sj,−.

Since Aj > 0, divide both sides:

x ≤ mj − ∆sj,−

∆sj,+ − ∆sj,−
. define bj := mj − ∆sj,−

∆sj,+ − ∆sj,−
.

Thus from pj,0 ≥ 0 we obtain the upper bound

x ≤ bj.

Step 7: Feasible Interval and Choice of pj,+. Collecting all constraints for row j,

pj,+ = x ≥ 0, x ≥ mj

∆sj,+
, x ≤ mj − ∆sj,−

∆sj,+ − ∆sj,−
.

Hence the feasible interval for pj,+ is

pj,+ ∈ [aj, bj], aj := max
(

0,
mj

∆sj,+

)
, bj := mj − ∆sj,−

∆sj,+ − ∆sj,−
.

When the grid {sj} and step ∆ti are chosen so that aj ≤ bj and bj ≤ 1, this interval is
non–empty and contained in [0, 1], and a valid tri–diagonal row exists.
A simple neutral choice is the midpoint

pj,+ := aj + bj

2 , ⇒ then pj,− := mj − ∆sj,+pj,+

∆sj,−
, pj,0 := 1 − pj,− − pj,+.

Satisfying our conditions:


pj,− + pj,0 + pj,+ = 1,

∆sj,− pj,− + ∆sj,+ pj,+ = mj,

pj,−, pj,0, pj,+ ≥ 0.

Step 8: Boundary Rows.
Lower Boundary j = 1. Allow transitions only to {s1, s2}:

p1,0 := P
(i)
1,1, p1,+ := P

(i)
1,2, p1,− := 0.

Row sum: p1,0 + p1,+ = 1.

Martingale: s1p1,0 + s2p1,+ = s1e
(r−q)∆ti .
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From the row sum p1,0 = 1 − p1,+, substitute:

s1(1 − p1,+) + s2p1,+ = s1e
(r−q)∆ti ,

s1 + (s2 − s1)p1,+ = s1e
(r−q)∆ti .

Let ∆s1,+ := s2 − s1 > 0 and m1 := s1
(
e(r−q)∆ti − 1

)
. Then

∆s1,+ p1,+ = m1 =⇒ p1,+ = m1

∆s1,+
, p1,0 = 1 − p1,+.

We require 0 ≤ p1,+ ≤ 1, which should hold for sensible grid/step choices.

Upper Boundary j = M . Allow transitions only to {sM−1, sM}:

pM,− := P
(i)
M,M−1, pM,0 := P

(i)
M,M , pM,+ := 0.

Row sum: pM,− + pM,0 = 1.

Martingale: sM−1pM,− + sMpM,0 = sMe(r−q)∆ti .

From pM,0 = 1 − pM,−, substitute:

sM−1pM,− + sM(1 − pM,−) = sMe(r−q)∆ti ,

sM + (sM−1 − sM)pM,− = sMe(r−q)∆ti .

Let ∆sM,− := sM−1 − sM < 0 and mM := sM

(
e(r−q)∆ti − 1

)
. Then

∆sM,− pM,− = mM =⇒ pM,− = mM

∆sM,−
, pM,0 = 1 − pM,−.

Again, should hold for reasonable grids and small ∆ti, these lie in [0, 1].

Step 9: Full Tri–Diagonal Transition Matrix. For a fixed time step i, after com-
puting all rows, the transition matrix is

P (i) =



p1,0 p1,+ 0 0 . . . 0
p2,− p2,0 p2,+ 0 . . . 0

0 p3,− p3,0 p3,+ . . . 0
... . . . . . . . . . ...
0 . . . 0 pM−1,− pM−1,0 pM−1,+

0 . . . 0 0 pM,− pM,0


.

Each row satisfies:
M∑

k=1
P

(i)
jk = 1,

M∑
k=1

P
(i)
jk sk = sje

(r−q)∆ti , P
(i)
jk ≥ 0.
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For interior rows, the entries are given by

pj,+ ∈ [aj, bj], pj,− = mj − ∆sj,+pj,+

∆sj,−
, pj,0 = 1 − pj,− − pj,+,

with
aj := max

(
0,

mj

∆sj,+

)
, bj := mj − ∆sj,−

∆sj,+ − ∆sj,−
.

For the boundaries we use the explicit 2–point formulas above for j = 1 and j = M .

Marginal Propagation and Consistency. Given π(i) and P (i), the Markov chain’s
marginal at the next time is

π̃(i+1) := π(i)P (i).

By construction, P (i) is row–stochastic, satisfies the risk–neutral conditional mean con-
straint, and is tri–diagonal (local), so π̃(i+1) is the forward–propagated discretized marginal.
If the grid and time step are sufficiently fine and the BL–based π(i) are accurately ap-
proximated on the grid, then

π̃(i+1) ≈ π(i+1) ∀ i.

Once the sequence of matrices {P (i)}N−1
i=0 is constructed, the entire option–implied term

structure of risk–neutral distributions can be propagated forward on the discrete grid
by repeated multiplication, π(i+n) ≈ π(i)P (i)P (i+1) · · · P (i+n−1). This provides a consis-
tent, implementable discrete-time model that can be used to simulate risk–neutral price
paths, to price payoffs that depend on intermediate states, and to produce transition-
based quantities such as state-conditional tail probabilities and scenario transitions. The
approximation π̃(i+1) ≈ π(i+1) is expected to hold when (i) the discretization error from
binning the continuous density is small (fine state grid covering the mass of fQ(·; ti)), (ii)
the time step ∆ti is not too large, and (iii) the local tri–diagonal structure is a reasonable
discrete proxy for a diffusion-like transition between maturities. In this regime, the con-
structed chain preserves probability mass and matches the risk–neutral conditional mean
at each state, so the forward propagation remains close to the option–implied marginals
across maturities.
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