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Abstract

This paper develops a framework for constructing a discrete-time Markov transi-
tion model directly from option-implied risk-neutral densities. Using the Breeden—
Litzenberger result, the risk-neutral probability distribution of the underlying as-
set at each maturity is recovered from the cross-section of European call option
prices. These marginal distributions are then discretized and embedded into a
time-inhomogeneous Markov chain subject to risk-neutral martingale constraints
and local transition structure. The derivation establishes existence and feasibility
conditions for tri-diagonal transition matrices that preserve both marginal consis-
tency and no-arbitrage dynamics. This work is ongoing; numerical implementation,
calibration methodology, and empirical validation using market option data are the

subject of ongoing development.



Standard Derivation of Breeden—Litzenberger and the Risk-neutral

Density

Consider a stock price S; and a European call option with maturity 7', strike K, and
time-0 price C'(K,T). Under the risk-neutral measure Q, the call price is the discounted

risk-neutral expectation of its payoft:
C(K,T)=e""E®|(Sy — K)*|,  where (Sr— K)* = max(Sr — K,0).

Let fo(s) denote the risk-neutral probability density function of Sy, then we can write

this expectation as

C(K,T) =T /0 (s — K)tfols)ds = e'T /K (s — K) fols) ds

First derivative with respect to the strike K. Differentiate C'(K,T) with respect

to K. Using Leibniz’s rule for differentiation under the integral sign,
O 7= K fals)ds = (K — K)fo(K) + [ - [(s — K)fals)]ds
oK Jic oL Q ol ol

Since (K — K) fo(K) =0 and aaK(s — K) = —1, we obtain

£</:<5_K) fals) ds—/;o(—l)fg(s) ds = —/:fQ(s) ds

Therefore,

0C(K,T) oo
b =T [ K fals)ds =~ [ fols)ds = —e QS = K).

Thus the first derivative of the call price with respect to the strike gives the risk-neutral

tail probability.

Second derivative with respect to the strike K. Differentiate once more with

respect to K:
0?C(K,T) B _e*TTi
oK? 0K
The derivative of the tail probability with respect to the threshold K is the negative of

Q(Sy > K).

the density evaluated at K:

Qs 2 K) =~ folK),

2
Substituting back, we obtain: a%([@’ﬂ = ”'T( fo(K )) =e " fo(K).



Solving for fo(K'), we have the Breeden-Litzenberger relation:

2 O°C(K,T)
OK?

fo(K)=e

Breeden—Litzenberger shows that the cross-section of call prices across strikes encodes the
full risk-neutral distribution at maturity: the first derivative with respect to K gives the
risk-neutral tail probability, and the second derivative (after undoing discounting) gives

the risk-neutral density.

Derive Markov Chain from Risk—Neutral Densities

Setup under the Risk—Neutral Measure. Work under the risk—neutral measure Q.
Let O0=ty<ti<--- <ty

be the time grid (e.g. option maturities), and let S; be the underlying asset price process.

Under Q: e~ ""D'S, is a martingale = Eg[S,,, | S| = S;,e VA

where r is the risk—free rate, ¢ the dividend yield, and At; = t;,1 — t;.
From option prices (via Breeden—Litzenberger: BL), we have for each ¢; a risk-neutral

density

fo(s;t;), s>0, so that for any Borel set A C Ry, QS € A) = / fo(s;t;)ds.
A

Step 1: Discretize the Price Space (States). Since the BL method derives a con-
tinuous PDF, we need to convert it into a discrete one for the Markov application. So

we choose a grid of price levels to be Markov states
S1 < S < -0 < Sy

Define bin boundaries for states as a midpoints:

:W’ j:27""M7

b.

j—

N[

and choose outer cutoffs by /o and bys41/2 50 that [by /2, bary1/2] D most of the support of fo(-;t;).

For each time t;, define the discrete marginal



Collect this into a row—vector

Step 2: Markov Chain and General Constraints. We construct a time-inhomogeneous
Markov chain

MC oMC MC
Sty 25ty Sty

taking values in {s1,..., sy} with transition matrices

J tit1

Pl — (pﬁg)j_fk:l, P = Q(SNC = s | SYC = 5;).

For all transition matrices P constructed s.t.:

* Row stochasticity:
M . .
S PY =1, P} >0, Yk
k=1

*x Marginal propagation (Markov consistency):

alt) = 7OpO s D =S OPO g =1 M.
i=1

* Risk—neutral martingale constraint (row—wise):

M o
Eq[SNC | SMC = 5] = 3 P{sy, = s 030,
k=1

Step 3: Impose Tri-Diagonal (Local) Structure. For simplicity of derivation, allow

transition to the 3 closest states, which imposes a local structure as follows.

From an interior state s; (j =2,..., M — 1) the chain can only move to s;_1, s;, or s;4+1
in one step:
O . .
Py =0 ifk¢{j—-1jj+1}
Define, for an interior row j: Dj— = Pj(,?—h Pio = Pj(é.), Py = Pj(,ij)+1'

The key constraints for the process are:

Pj— +Dpjo+pj+ =1, (1)

$j-1Pj—~ + $jPj0 t Sj+1Pj+ = Sje(rfq)mia (2)

Pj—> Pj0s Pj+ = 0. (3)

Andlet As;_:=s;_1—5; <0, Asjy =841 —5; >0, m; =S, (e(r_qmti - 1).
From the row sum (1) we get pjo=1—p;_ —Dpj+.



Substitute p; o into the martingale constraint (2):

si-aDj— +5;(1—pjm = pjy) + sj01pj4 = 556708,
Pj—(8j—1 = 8;) + pj+(sjt1 — 85) = 3; (e(r_qwi - 1)-
Equivalently, in terms of As;_y and m;, Asj_pj_ + As; 1 pj+ =m,.
Pj— tpjo+pj+ =1,
Thus each interior row satisfies: Asj_pj_ + Asj i pj+ =mj,

Pj,—» Pj,0, Pj,+ Z 0.

This is a system of 2 equations in 3 unknowns, so there we get 1 free variable.

Step 4: Parameterize the Interior Row by p;_ . Let z := p; . be the free variable.

mj — As;  x

Asj_pj_ 4+ As; 1 =my; [solve for p; _| p—(z) = A
Sj,—
From the row sum:  pjo(z) =1 —p;_(2) —a =1 — 254" o
i
So for an interior state transition probabilities 7,
mj — As; x mj — As;  x
() = ——"—, piolr)=1——"—"——2, pj;==x
pj—(2) As,_ pjo() As;_ Pj+

m; — As; 4@

Step 5: Lower bounds from p;_ > 0. Require p;_(z)= A — >0
Sj,_
Since As;_ < 0, multiplying both sides by As; _ flips the inequality:
mj —As;tx <0 < Asj x>m,.
Because As;, >0, = x> AT7+. So from p; _ > 0 we get a lower bound
J»
m .
T > L= I
T Asy
From p; ; > 0 we also have the trivial bound x > 0. Combining,
m .
x> a;™ :=max |0, .
- ( ASJH‘)
) mj — As;  x
Step 6: Upper Bound from p;, > 0. We require: p;o(x) = 1—A—’—x > 0.
Sj,—



Multiply both sides by As;_ < 0, flipping the inequality: Asjv_—(mj—Asj#x) —Asj_z <0.

Simplify the left-hand side: As; _—m;+As; o—As; _x = (Asj+—As; _)x+(As;_—m;).
Let Aji=Asjy —As;_ =541 — sj-1 > 0.

Then the inequality becomes Ajx+ (Asj— —m;) <0 <= Ajxz<m;—As;_.

Since A; > 0, divide both sides:

m; — As; _ m; — ASs; _
A —— define b == e —
Asjq — Asj - Asjq — Asj -

Thus from p; > 0 we obtain the upper bound

ZESbj

Step 7: Feasible Interval and Choice of p; .. Collecting all constraints for row j,

mj — AS]'7_

pj,-‘r:xZOa 1’2

Hence the feasible interval for p; ; is

’ ASJH_ I ASJH_ — A8j7_.

. T As.
pj+ € laz, bl a;j = max <O M ) ’ b - m; 53,

When the grid {s;} and step At; are chosen so that a; < b; and b; < 1, this interval is
non—empty and contained in [0, 1], and a valid tri-diagonal row exists.
A simple neutral choice is the midpoint

a; +b; mj — AS; P+
Py = 2 5 /= then pj_ = —2 }J RS, Pjo =1—pj_ —Dpj.

pj— +Pjo +pi+ =1,
Satisfying our conditions: Asj_pj_+ As; i pjy =mj,
Pj—» Pjos Pj+ = 0.
Step 8: Boundary Rows.

Lower Boundary j = 1. Allow transitions only to {si, s2}:

P10 = Pff, P1+ = Py, p1— =0.

)

Row sum: pio+pi+ =1

Martingale:  sipio + s2p1 4+ = spe(r— DAL



From the row sum p; o = 1 — p; 4, substitute:

51(1 = p1,4) + s2p1 4 = sl DA

s14 (55— s1)pry = s1e VA

Let Asy 4 =82 — 51 >0 and my := s (e(”_q)mi — 1). Then

ma
A51,+ P+ =T — Pi+=—H——, P1o = 1 — P1,+-
ASL"‘

We require 0 < p; 4 < 1, which should hold for sensible grid/step choices.

Upper Boundary j = M. Allow transitions only to {sy_1, sar}:

Pm,— = Pjﬁ/zl),M—h Pmo = Pﬁ?M, pm+ = 0.
Row sum: Pm,— +pumo = 1.
Martingale: SM-1DPM,— + SMDPymo = sprer DAL

From pao = 1 — pa,—, substitute:

sm—1Pm,— + sm(l —pu—) = sprel" VA
sm 4 (Sp—1 — Sm)pum— = sppel"T DAY
Let Asyr— :=spy—1 — sy <0 and myy := sM(e(”_‘I)A“ — 1). Then
mpyr
Asyr—pv— =my =  |Pu-— = Aoy pPyvo=1—pu—.

Again, should hold for reasonable grids and small At;, these lie in [0, 1].

Step 9: Full Tri—-Diagonal Transition Matrix. For a fixed time step i, after com-

puting all rows, the transition matrix is

Pio P+ 0 0
P2,— P20 D2+ 0
Pl _ 0 ps— pso  DPa+
0 Prm-1,— PM-10 PM-1+
0 0 DM~  PMO

M . M . .
Each row satisfies: > Pj(,? =1, > Pj(,? sp = s;eT DA P.(,’C) > 0.
k=1 k=1



For interior rows, the entries are given by

m; — As;jipjy
pj+ € laj, byl pj-=— As,j o, Pjo=1—pj— —Dj+,
.

with

a; :=max |0 my b, = L e el A8,
I " Asi, )] T Asiy — As;
.77+ J:+ 1

For the boundaries we use the explicit 2-point formulas above for j =1 and 7 = M.

Marginal Propagation and Consistency. Given 7V and P®, the Markov chain’s

marginal at the next time is

|7+D .= 70 pO),

By construction, P® is row-stochastic, satisfies the risk-neutral conditional mean con-
straint, and is tri-diagonal (local), so #(*+1) is the forwardpropagated discretized marginal.
If the grid and time step are sufficiently fine and the BL-based 7 are accurately ap-

proximated on the grid, then
7D & gDy,

Once the sequence of matrices { P} ! is constructed, the entire option-implied term
structure of risk—neutral distributions can be propagated forward on the discrete grid
by repeated multiplication, 70" ~ 7(®p@ pG+l) ... plt+n=1) = This provides a consis-
tent, implementable discrete-time model that can be used to simulate risk—neutral price
paths, to price payoffs that depend on intermediate states, and to produce transition-
based quantities such as state-conditional tail probabilities and scenario transitions. The
approximation 701 ~ 7+ is expected to hold when (i) the discretization error from
binning the continuous density is small (fine state grid covering the mass of fo(+;¢;)), (ii)
the time step At; is not too large, and (iii) the local tri-diagonal structure is a reasonable
discrete proxy for a diffusion-like transition between maturities. In this regime, the con-
structed chain preserves probability mass and matches the risk-neutral conditional mean
at each state, so the forward propagation remains close to the option—implied marginals

across madturities.



